Researchers have designed a new type of gravitational wave detector that operates in the milli-Hertz range, a region untouched by current observatories. Built with optical resonators and atomic clocks, the compact detectors can fit on a lab table yet probe signals from exotic binaries and ancient cosmic events. Unlike LIGO, they’re relatively immune to seismic noise and could start working long before space missions like LISA launch.
Researchers have designed a new type of gravitational wave detector that operates in the milli-Hertz range, a region untouched by current observatories. Built with optical resonators and atomic clocks, the compact detectors can fit on a lab table yet probe signals from exotic binaries and ancient cosmic events. Unlike LIGO, they’re relatively immune to seismic noise and could start working long before space missions like LISA launch. Researchers have designed a new type of gravitational wave detector that operates in the milli-Hertz range, a region untouched by current observatories. Built with optical resonators and atomic clocks, the compact detectors can fit on a lab table yet probe signals from exotic binaries and ancient cosmic events. Unlike LIGO, they’re relatively immune to seismic noise and could start working long before space missions like LISA launch.