The formation of aggregates due to protein misfolding and resulting protein instability is associated with several diseases. Previous studies have shown the potential of sulfobetaine polymer, a zwitterionic polymer, to suppress protein aggregation. Now, researchers elucidate the mechanism underlying this process and show ways to optimize protein stabilization using these polymers. Going ahead, future therapies may be able to prevent or reverse diseases like Alzheimer’s by building on the unique ability of zwitterionic polymers.
The formation of aggregates due to protein misfolding and resulting protein instability is associated with several diseases. Previous studies have shown the potential of sulfobetaine polymer, a zwitterionic polymer, to suppress protein aggregation. Now, researchers elucidate the mechanism underlying this process and show ways to optimize protein stabilization using these polymers. Going ahead, future therapies may be able to prevent or reverse diseases like Alzheimer’s by building on the unique ability of zwitterionic polymers. The formation of aggregates due to protein misfolding and resulting protein instability is associated with several diseases. Previous studies have shown the potential of sulfobetaine polymer, a zwitterionic polymer, to suppress protein aggregation. Now, researchers elucidate the mechanism underlying this process and show ways to optimize protein stabilization using these polymers. Going ahead, future therapies may be able to prevent or reverse diseases like Alzheimer’s by building on the unique ability of zwitterionic polymers.