Path-following performance of autonomous ships

With recent requirements for reducing greenhouse gas emissions of autonomous ships, an emerging body of research is focused on assessing the path-following performance of maritime autonomous surface ships (MASS) at low speeds under adverse weather conditions. To combat the poor accuracy of traditional methods, in a new study, researchers investigated the path-following performance of MASS using a free-running computational fluid dynamics model. Their findings can help ensure safer autonomous navigation with reduced propulsion power.

​With recent requirements for reducing greenhouse gas emissions of autonomous ships, an emerging body of research is focused on assessing the path-following performance of maritime autonomous surface ships (MASS) at low speeds under adverse weather conditions. To combat the poor accuracy of traditional methods, in a new study, researchers investigated the path-following performance of MASS using a free-running computational fluid dynamics model. Their findings can help ensure safer autonomous navigation with reduced propulsion power. With recent requirements for reducing greenhouse gas emissions of autonomous ships, an emerging body of research is focused on assessing the path-following performance of maritime autonomous surface ships (MASS) at low speeds under adverse weather conditions. To combat the poor accuracy of traditional methods, in a new study, researchers investigated the path-following performance of MASS using a free-running computational fluid dynamics model. Their findings can help ensure safer autonomous navigation with reduced propulsion power. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top