Wildlife biologists used a novel technique to trace the movement of carbon through Arctic and boreal forest food webs and found that climate warming resulted in a shift from plant-based food webs to fungal-based food webs for several high-latitude species, with potential indirect effects on nutrient cycling and ecosystem function.
Wildlife biologists used a novel technique to trace the movement of carbon through Arctic and boreal forest food webs and found that climate warming resulted in a shift from plant-based food webs to fungal-based food webs for several high-latitude species, with potential indirect effects on nutrient cycling and ecosystem function. Wildlife biologists used a novel technique to trace the movement of carbon through Arctic and boreal forest food webs and found that climate warming resulted in a shift from plant-based food webs to fungal-based food webs for several high-latitude species, with potential indirect effects on nutrient cycling and ecosystem function.