Researchers have discovered a new way ribonucleic acid (RNA) impacts fear-related learning and memory. Researchers demonstrated that a noncoding RNA known as Gas5 coordinates the trafficking and clustering of RNA molecules inside the long processes of neurons, and orchestrating neuronal excitability in real time that contributes to learning and memory. This study builds on earlier findings this year which identified a separate population of learning-related RNAs that accumulate near the synapse — the junction between neurons that allow them to communicate. In that paper, published in the Journal of Neuroscience, they uncovered several new synapse-specific RNA that harbour a specific chemical tag called N6-methyladenosine (m6A).
Researchers have discovered a new way ribonucleic acid (RNA) impacts fear-related learning and memory. Researchers demonstrated that a noncoding RNA known as Gas5 coordinates the trafficking and clustering of RNA molecules inside the long processes of neurons, and orchestrating neuronal excitability in real time that contributes to learning and memory. This study builds on earlier findings this year which identified a separate population of learning-related RNAs that accumulate near the synapse — the junction between neurons that allow them to communicate. In that paper, published in the Journal of Neuroscience, they uncovered several new synapse-specific RNA that harbour a specific chemical tag called N6-methyladenosine (m6A). Researchers have discovered a new way ribonucleic acid (RNA) impacts fear-related learning and memory. Researchers demonstrated that a noncoding RNA known as Gas5 coordinates the trafficking and clustering of RNA molecules inside the long processes of neurons, and orchestrating neuronal excitability in real time that contributes to learning and memory. This study builds on earlier findings this year which identified a separate population of learning-related RNAs that accumulate near the synapse — the junction between neurons that allow them to communicate. In that paper, published in the Journal of Neuroscience, they uncovered several new synapse-specific RNA that harbour a specific chemical tag called N6-methyladenosine (m6A).