Local rearrangements of carbon nanotubes (CNTs) upon twisting may be the cause for the poor mechanical performance of CNT bundles and yarns, report scientists. Using molecular dynamics simulations, they revealed that defects known as disclination lines appear when a CNT bundle is twisted, which alters the tensile properties of the whole system. Their findings could help us understand and solve current challenges holding CNT bundles and yarns back in many applied fields.
Local rearrangements of carbon nanotubes (CNTs) upon twisting may be the cause for the poor mechanical performance of CNT bundles and yarns, report scientists. Using molecular dynamics simulations, they revealed that defects known as disclination lines appear when a CNT bundle is twisted, which alters the tensile properties of the whole system. Their findings could help us understand and solve current challenges holding CNT bundles and yarns back in many applied fields. Local rearrangements of carbon nanotubes (CNTs) upon twisting may be the cause for the poor mechanical performance of CNT bundles and yarns, report scientists. Using molecular dynamics simulations, they revealed that defects known as disclination lines appear when a CNT bundle is twisted, which alters the tensile properties of the whole system. Their findings could help us understand and solve current challenges holding CNT bundles and yarns back in many applied fields.